Serial Renovation of an University Building
Bruno-Sander-Haus – outPHit observer project

Point cadrage : conférence Rénovation 29/3
Assoz. Prof. Dr.-Ing. Rainer Pfluger
University of Innsbruck
Unit: Energy Efficient Building

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957175. The presented contents are the author's sole responsibility and do not necessarily reflect the views of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957175. The presented contents are the author's sole responsibility and do not necessarily reflect the views of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.
Site Plan (University of Innsbruck, Austria)
Existing Building
IR-Thermography (Thermal Bridges!)

Source: AB Timber Construction
Anton Kraler
Existing facade construction

Source: Master Thesis Manuel Dragašchnig, BSc
The challenges and how to solve

- **Construction year:** 1980
- **Poor insulation:** External insulation + new windows
- **Thermal bridges:** External insulation
- **Low airtightness:** Airtightness layer
- **Bad air quality:** HRV Ventilation system
- **Overheating in summer:** External shading

- **Refurbishment during operation of the building (University):** Prefabricated elements!

Solution: outPHit

before 156 kWh/m²a after: 22,4 kWh/m²a < 25 kWh/m²a
(Passive house standard for refurbishing: EnerPHit)

Bruno-Sander-Haus,
Source: UIBK
Cross section (10 storey building) offices, seminar rooms, labs

Airthightness and thermal insulation
Mounting variants of prefabricated facades depending on static requirements and geometry

1. **Load down** poor static Foundation necessary Modules not replaceable

2. **Suspended** fixed bearing at the top: Tensile forces

3. **Curtained (preferable)** Modules replaceable

4. **Put on** Remoove old facade Modules replaceable

Source: C. Le Levé, dissertation, UIBK 2020
Assembly of Curtained prefab. Elements

Facade Connector developed by UIBK

Sherpa Efco for timber frame construction

Source: C. Le Levé, dissertation, UIBK 2020
Facade bearing

Facade bearing mounted at the concrete elements, adjustable in three dimensions compensate for tolerances

Section A-A

Section B-B

Source: Master Thesis Manuel Dragaschnig, BSc
Prefab. timber elements in a high-rise building: How to solve fire safety?

In principle, the use of combustible materials, including wood, are not covered by the applicable legislation. However, the OIB guideline 2 "Fire protection" allows a deviation, provided that it can be demonstrated that the same level of protection is maintained!

Research of University of Innsbruck (Unit Timber Construction): Simulation and fire tests about encapsulation of timber elements

- Fire Resistance Class from outside to inside: EI 90-ef(i←o).
- Continuous double planking
- Single planking not sufficient for 90 minutes fire resistance
Prefab. timber elements in a high-rise building: How to solve fire safety?

Continuous double planking

Temperature distribution within the construction calculated by dynamic simulation after 90 minutes expose to fire from the outside.
Fire safety by double-layer gypsum fiber board

Encapsulation

Encapsulisation by double-layer gypsum fiber board from outside, fire from inside by concrete elements of the existing building

Source: Master Thesis Manuel Dragaschnig, BSc
Architectural design (Student Theses)

Combination of PV-panels and conventional facade cladding

Source: Julian Höck
EnerPHit-renovation of University Building in 2014 (Faculty of technical sciences)

After renovation

Energy reduction by a factor of 9

Specific heat demand before renovation: >180 kWh/m²a
After EnerPHit-renovation: < 20 kWh/m²a
Rendering of facade design similar to the EnerPHit-Building of the Faculty of Technical Sciences

Source: Sven Stiefel
Architectural design (Student Theses)

Source: Isabelle Limberger

Prefabricated elements with transparent/opaque parts

Source: Clemens Berresheim
Architectural design (Student Theses)

Facade integrated PV-panel

Source: Esra Agcakoc

3-Dimensional Facade structure and Building integrated PV BIPV

PV-sliding shutters

Source: Simon Rudiger
Architectural design (Student Theses)

Prefabricated Elements

Exploded drawing of prefabricated elements, Different layer, statics and windows included

Source: Elias Spitaler, UIBK
Summary

outPHit Observer Project Bruno-Sander-Haus
High energy efficiency: EnerPHit-Standard < 25 kWh/m²a
Prefabication with timber elements:

- Refurbishing during ongoing operation of the building
- High quality, low cost
- Fire protection by encapsulated timber
- Roof and facade integrated PV
Find out more?
Visit us on outphit.eu

Any questions?
Rainer Pfluger
Rainer.pfluger@uibk.ac.at
OutPHit-Projektteam

Passive House Institute
International Passive House Association
Climate Alliance
universität Innsbruck
Passief Bouwen
Hellenic Passive House Institute
EnEffect
ecoworks
NHT
PROPASSIF
VAND