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Abstract
The rapid growth of electric vehicles (EVs) necessitates efficient charging infrastructure
planning, considering existing facilities. In urban contexts, EV charging times depend on
activity durations rather than charging time itself. Considering both effects, this study
proposes a sequential, two-step urban EV charger allocation framework. Step 1 uses a
modified K-means algorithm to identify candidate locations, incorporating activity locations,
participations, and durations. Step 2 employs metamodel-based optimization to allocate
charger types and plug counts under setup, operational budget, and power constraints to the
candidate locations. Applied to a 10% MATSim Montreal scenario with 74,542 EV users with
only 1,392 public chargers, the framework reduced average peak-hour queues by 40% within
10,000 evaluations while respecting 60% increases in setup, operational, and power budgets.
Results highlight a preference for deploying more slow chargers over fewer fast chargers in
this high-demand scenario. Demand elasticity was observed, suggesting the need for improved
behavioral modeling.
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1 Introduction
With zero runtime emissions and a high energy conversion rate compared to gasoline vehicles
(1.5 km/mj vs. 0.28 km/mj) (Nie & Ghamami 2013), electric vehicles (EVs) are increasingly
adopted by consumers and policymakers to reduce carbon emissions. The national EV survey
for Canada reports a sixfold increase in EV ownership from 2015 to 2018, driven by incentives
like tax exemptions, priority lanes, and free charging (Agency 2021). Quebec targets over
90% EV penetration by 2030 (Finance 2020). Advances in battery technology, rising demand,
emission goals, and regulatory pressures have made electrification a top priority for the
automotive industry (Zhao et al. 2024, Csiszár et al. 2019, Li et al. 2021).

Despite advancements, the unavailability of charging infrastructure remains a critical
deterrent to EV adoption (Bailey et al. 2024). Charger unavailability leads to long detours and
extended waiting times (Shuai et al. 2024, Csiszár et al. 2019) discouraging potential adopters
(E. Seilabi et al. 2024, Zhang et al. 2020, Ma et al. 2024). Therefore, effective planning is
essential for EV infrastructure. In urban areas, Individuals’ daily activities constrain them to
specific network locations at particular times. Thus activity locations, durations, and start/end
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times govern EV users’ charging patterns including charging start time and durations. This
connection between charging and activity patterns, including location and duration, in urban
settings is well recognized in EV simulation literature (Gharbaoui et al. 2013, Waraich 2013,
Gopal et al. 2017, Liu et al. 2022, Chaudhari et al. 2018). However, very few literature applied
activity-based charging logic in EV infrastructure planning.

Zhang et al. (2020) used an activity-based traffic model to generate charging requests for
an electric ridesharing fleet in San Francisco, identifying charger locations through K-means
clustering. However, this work primarily optimized spatial distances while neglecting key
metrics such as queuing times, connection durations, and energy served. Similarly, Ma et al.
(2024) developed a game-theoretical framework integrating activity networks and charging
facility planning, but its scalability to large urban contexts remains limited. Csiszár et al. (2019)
employed a land-use approach to optimize charger placement by identifying activity hotspots
and parking availability. However, it neither incorporated temporal demand variations nor
accounted for activity durations, both of which are crucial for effective urban EV infrastructure
planning. Notably, while some studies integrate activity patterns, none explicitly recognize
the role of activity durations in governing charging times—a critical factor in urban contexts
where charging behavior is closely tied to user schedules.

Another key aspect missing in the literature is the explicit incorporation of existing charging
facilities, which, in reality, should significantly influence the placement of new charger facilities
and the redistribution of demand following such placements. This study introduces a sequential
charger placement algorithm to address this gap. To the best of the authors’ knowledge, no
existing work explicitly integrates existing charging infrastructure into the charger location
optimization process—a crucial step for the sequential development of an efficient charging
network in urban areas.

As for the location choice, existing literature has broadly approached the problem using
two primary design principles: demand-based charger allocation and flow-capturing charger
allocation. Demand-based methods focus on estimating charging demand through simulations
or data-driven models, aiming to allocate chargers to meet this demand efficiently. Foundational
works, such as Dashora et al. (2010), Frade et al. (2011), and Chen et al. (2013), prioritize
minimizing the distance between charging requests and chargers. Recent advancements have
expanded these methods, with Liu et al. (2022) and Waraich (2013) developing activity-based
simulation frameworks to generate spatial and temporal demand distributions, and Chaudhari
et al. (2018) and Gopal et al. (2017) simulating aggregated charging loads across networks. On
the other hand, flow-capturing methods prioritize strategically locating chargers to maximize
accessibility and coverage. Classical studies, including Kuby & Lim (2005) and Kuby & Lim
(2007), use flow-capturing approaches to intercept origin-destination flows along high-traffic
corridors. Recent contributions, such as Shuai et al. (2024), optimize charger placement in
high-demand areas using genetic algorithms, while Csiszár et al. (2019) adopt a land-use
approach to target activity hotspots and parking availability. Similarly, Zhang et al. (2020)
uses K-means clustering to identify optimal locations by minimizing the distance between
chargers and activity-based charging requests. As both approaches address key aspects of EV
users’ behavior and charging dynamics, in this study, we combine these approaches into a
multi-step framework.

Given the above literature landscape, this paper proposes a two-step, activity-driven,
sequential charger allocation framework in the urban context, with existing charging
infrastructures. The two steps combine both design principles i.e., capture activity trajectories
with most travelers while satisfying generated charging demands.
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2 Problem statement
In this research, we develop the sequential charger allocation algorithm from the perspective
of a regulating body where the primary concern is to improve user experience and utilization
of chargers at a given budget while satisfying power side constraints. In that respect, the
charger allocation problem can be formulated as a mixed integer, constrained, non-linear queue
minimization problem, where the objective is to minimize the average queue at chargers given
a current EV charging infrastructure, fixed monetary setup, and operation budgets for new
infrastructure placements and maintenance under certain zonal max power draw constraint.
The decision variables include the integer variables determining the number and types of plugs
at each charging infrastructure, for a site where no chargers should be placed the decision
variables, primarily the number of plugs can be set to zero. This formulation does require the
number of cites for chargers placement to be a limited discrete number. The problem dimension
increases threefold to this number and the combinatorial solution space grows exponentially.

Below is the mathematical formulation of the problem to be solved. Here, i ∈ I represents
the candidate spots for new chargers and j ∈ J represents the current charger locations. Qi

denotes the average queue and Vi denotes the power draw per plug at charger i. The decision
variables denoted by xi and pi denote charger type and plug count at candidate location i. xj
and pj similarly denote the charger type and plug count at the current charger locations j. Cs,x

and Co,x are the setup and operation cost of charger type x. Bo and Bs are budget constraints
for the operation and setup budget. z represents zones and Iz and Jz are the set of candidate
and current charger locations respectively.

minxi,pi

1

|I|+ |J |

∑
i∈I

Qi +
∑
j∈J

Qj

 ; ∀i ∈ I

xi, xj ∈ X {Level 1, Level 2 or Fast}
pi, pj ∈ P {0, 1, 2, ..., pmax}

s.t.∑
i∈I

pi × Co,xi +
∑
j∈J

pj × Co,xi ≤ Co∑
i∈I

pi × Cs,xi ≤ Cs∑
i∈Iz

Vi +
∑
j∈Jz

Vj ≤ Vz; ∀z ∈ Z

(1)

We use Micro Agent Traffic Simulation, i.e., MATSim (W Axhausen et al. 2016)
for simulating electric vehicle charging in the proposed urban context. MATSim is an
activity-based, agent-driven traffic microsimulation model where individual agents try to
maximize their utility (score) by improving both their trip and activity patterns (replanning).
The model reaches equilibrium when no travelers can improve their utility by unilaterally
switching their activity (duration, start time, charging, etc.) or trip-related (mode, route, etc.)
choices. Figure 1 shows the different steps of the MATSim loop.
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Table 1: Notation Table

Notation Description
i Candidate charger location
j Existing charger location
I Set of candidate charger location
If Set if candidate chargers in the choice set of facility f
Iz Set if candidate chargers in zone z
J Set of existing charger location
Jf Set if existing chargers in the choice set of facility f
Jz Set if existing chargers in zone z
f Activity facility
F Set of activity facilities
x Charger type variable
X Vector containing all xi; I ∈ I ∪ J
p Charger plug count variable
P Vector containing all pi; I ∈ I ∪ J
h Hour
H Set of hours
δf,h Incident variable, 0 if peak hour at facility f is h, 0 otherwise
Qi Average queue at charger i
qf Activities performed by EV user at facility f
qf,i Demand from facility f to charger i
qi Demand in charger i
qi,h Demand at charger i at hour h
df,i Distance from facility f to charger i
Co Max operational budget for the optimization
Cs Max setup budget for the optimization
Cs,xi Cost of setting up 1 plug for charger type xi
Co,xi Cost of maintaining 1 plug for charger type xi
ci Cost of using charger i
b Average battery capacity

Uf,i Utility of choosing charger i from facility f
ωf,i Probability of choosing charger i from facility f
ti Average charging time at peak hour at charger i
t0,i Average intended charging duration at charger i
t0,i,h Average intended charging duration at charger i at hour h
z Power zones
Z Set of power zones
Vi Total energy draw at charger i during peak hour
Vz Total energy draw in zone z during peak hour
vxi Charger power of type xi
βm Marginal utility of money
βt marginal utility of time
βr marginal utility of charger attractiveness
βd Marginal utility of distance
η Scaling parameter of logit
ρ Peak hour factor
α Parameter of volume delay function for ti
γ Parameter of volume delay function for ti
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Figure 1: MATSim Equilibrium Loop

3 Methodological Framework
In this research, we propose a two-step, sequential charger location estimation framework that
integrates demand-based and flow-capturing approaches while accounting for urban land-use
patterns and charging behaviors. The two steps are:

• In the first step, candidate charger location set I is selected by maximizing the capture
of agent activity locations and durations using a modified K-means algorithm specialized
to handle existing facilities.

• In the second step, a single-shot physical metamodel-based optimization is performed to
determine the optimal location and plug counts of the new charger facilities.

Finally, we analyze and evaluate our results in the original simulator. Figure 2 shows the
two steps, the flow of information between them, and the corresponding data requirement at
each step in the proposed charger location choice optimization framework.

Figure 2: Schematics of the proposed charger location estimation algorithm.
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3.1 Step 1: Modified K-Means Algorithm
The first step aims to reduce the solution space by pre-determining the candidate charger
locations (i.e., hotspots) using a modified k-means clustering algorithm. As K-means requires
the number of clusters beforehand, the number of candidate locations to be generated from
this algorithm becomes a configurable parameter. Thus the framework allows the modeler to
choose the complexity level of the second step optimization problem.

The modified k-means algorithm iterates over two types of clusters, dynamic and static,
where only the dynamic cluster centroids are updated over the training process. Additionally,
the centroid always snaps to the nearest activity facility location to facilitate charging while
performing activities. Here, the dynamic clusters represent the candidate locations and the
static clusters represent the preexisting chargers in the network. The feature vector for the
modified k-means algorithm contains the location (x,y coordinates) and the number of users in
each activity facility location as the feature vector for each activity facility location. As a result,
the cluster centroids of the dynamic clusters will be closer in distance to the facilities with a
higher number of activities performed. We further investigated including activity durations in
the feature vectors of this step. The results are presented in the results section of this report.
The modified algorithm is presented in algorithm 1. Figure 3 showcases a small problem with
four cluster centroids (one static and three dynamic) with 100 activity facility locations in a
small rectangular region.

Algorithm 1 Modified K-means with Fixed and Dynamic Clusters
1: Input: Set of activity facilities F , fixed centroids J ⊆ F , initial dynamic centroids I ⊆ F ,

maximum iterations T , tolerance ϵ
2: Output: Final dynamic centroids I and facility assignments
3: Initialize assignments for all f ∈ F
4: for each iteration k = 1, 2, . . . ,K do
5: Step 1: Assign Facilities to Clusters
6: for each activity facility f ∈ F do
7: Compute the distance from f to all centroids in J ∪ I
8: Assign f to the nearest centroid
9: Step 2: Update Dynamic Centroids

10: for each dynamic centroid i ∈ I do
11: Calculate the mean of facilities assigned to i
12: Snap i to the nearest facility f ∈ F to the calculated mean
13: Step 3: Check for Convergence
14: Compute the total change in centroids ∆
15: if ∆ < ϵ then
16: Stop
17: Return: Updated I and facility assignments
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(a) (b)

(c) (d)

(e)

Figure 3: Iteration 1-5 (a-e) for the modified K-means clustering algorithm
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3.2 Step 2: Metamodel development and optimization
We have used the urbanEV contribution of MATSim developed by Bakhtiari et al. (2024).
This model simulates EV charging, usage, and discharging in the urban context where charging
is coupled with activities. Assuming the mapping between charger placement to queue and
charger placement to power draws is nonlinear, the problem is a combinatorial optimization
problem with a nonlinear objective and mixed (linear and nonlinear) constraints. With a costly
to evaluate, activity-based microsimulation model without closed-form solutions embedded in
the objective, the problem quickly becomes intractable to solve directly.

In most engineering optimization problems with similar intractability, metamodeling
(Khatouri et al. 2022) is used. Metamodeling is a simplified model of a complex simulation
model that is developed for faster approximation of the original function. Metamodels can
be categorized into two broad categories: general-purpose metamodels and problem-specific
metamodels. General-purpose metamodels are surface approximations with general-purpose
functions such as ridge and lasso regression (Tibshirani 1996, Hoerl & Kennard 1970), gradient
boosting(Friedman 2001), and extreme gradient boosting techniques (Ester et al. 2022), etc.
Problem-specific metamodels, on the other hand, are simplified mathematical representations
of the original problem with simpler dynamics for faster evaluation (Khatouri et al. 2022,
Razavi et al. 2012, Kianifar & Campean 2020). There are hybrid metamodeling techniques
that combine both types of metamodel for more efficient training and evaluation Zhang et al.
(2017), Patwary et al. (2021).

While physical metamodels with dynamics similar to the original simulation can achieve
comparable performance without requiring extensive training or costly-to-generate datasets,
they often incur significantly higher computational costs during optimization compared to their
general-purpose counterparts. Therefore, the choice of metamodel depends on the trade-off
between the simulation runtime required for dataset generation and the computational
complexity and runtime of the metamodel itself.

Given the combinatorially large solution space of our problem and the high computational
cost of evaluating the underlying simulation model, generating a dataset sufficiently large
to cover the entire solution domain for training general-purpose or hybrid metamodels is
impractical. Consequently, our framework employs a single-shot, problem-specific metamodel
with simplified dynamics to approximate the outputs of the MATSim urban EV module during
optimization. Despite being single-shot, the metamodel retains the behavioral parameter set
of MATSim, ensuring consistency in the underlying logic. Moreover, these parameters can be
manually adjusted to refine the approximation and further align the metamodel’s outputs with
those of the original simulator.

Therefore, step 2 solves the optimization problem presented in equation 1 except the
queue and power draw for chargers at locations i ∈ I and j ∈ J are approximated using a
problem-specific Demand Allocation metamodel.

3.3 Demand Allocation Metamodel Formulation
For a given solution, [X,P ] the metamodel approximates three outcomes of charger demand
allocation: demand per charger (qi,qj), average intended charging duration per charger
(t0,i, t0,j), and finally average charging time ti, tj required per charger for every charger location
i ∈ I and j ∈ J . The difference between intended charging duration t0 and actual charging
duration t can be understood with their parallel to the free flow and actual link travel time
in static traffic assignment models. t0,i here is the average time the EV users want to charge
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Figure 4: Wardrop’s Equilibrium in the Demand Allocation Model

at facility i whereas t is the time they require to charge for that amount. So, charging time t
includes charging duration t0 and any incurred delay.

These three terms are interconnected, as the demand at a charger q governs its queue time
t, which in turn influences EV users’ charger choice probability. Charger choice probability
from different activity facilities around a charger in turn governs the average intended duration
of charging t0, the daily peak hour of charging, and the peak hour’s charging demand at that
charger q. This cyclic dependency crates a Wardrops equilibrium (Wardrop & Whitehead
1952) where the equilibrium is reached when no EV user can improve their charging time
by unilaterally changing their charger choice. Figure 4 shows the interdependency between
different components of the proposed demand allocation model.

For this model, we assumed the choice set of chargers for EV users performing a certain
activity at a facility is bound by the distance between the activity facility and the charger
location. To minimize computational burden, we have further added a limit on max number
of chargers to put in a facility’s charger choice set. For facility f , this choice set is defined by
If : di,f ≤ dmax.

The probability of choosing charger i from facility f , ωf,i is calculated using the logit model
and can be written as follows. Here the utility includes queue time (ti − ti,0), distance df,i,
charging cost ci if any, and the obtained charge to battery capacity ratio t0,i vxi

b for determining
the attractiveness of a charger.

ωf,i =
eηUf,i∑

i′∈If e
ηUf,i′

Uf,i = βt × (ti − t0,i) + βd × df,i + βm × ci

+ βr ×min(
t0,i vxi

b
, 1)

(2)

Queuing effects are captured while calculating ti from t0,i using the volume delay function
as below. Here, α and γ controls the smoothness of the curve. In our experiments, α = 0.15
and γ = 1.

ti = t0,i

{
1 + α×

(
qi ×min(t0,i, 3600)

3600× pi

)γ}
(3)

After calculating the utility and charger choice probability, we can get hourly demand for
a charger from surrounding facilities using equation 4. Here, facility demand is multiplied by
the facility to charger probability and ρ, the peak hour factor.
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To estimate the peak hour demand for electric vehicle (EV) charging, it is important to
account for two primary factors: the proportion of EV users likely to charge at a specific facility
and the proportion of total daily demand occurring during peak hours. Studies indicate that,
depending on the facility type, approximately 60-80% of residential EV users and 30-50% of
workplace or public charging users will utilize charging services at their respective locations
throughout the day (Bailey et al. 2024, Agency 2021). Additionally, charging patterns suggest
that peak hour demand—typically during evening or late afternoon hours—accounts for around
15-20% of the total daily usage (Bailey et al. 2024, Finance 2020). Combining these factors
allows for the calculation of a peak hour factor, which is the product of the proportion of users
charging and the peak hour demand percentage. In our case, we assume 60% of users charging
at a facility on average and 20% of this charging demand occurs during the peak hour, the peak
hour factor is calculated as 0.6 × 0.2 = 0.12, meaning 12% of the daily demand occurs during
the peak hour.

qi,h =
∑
f∈F

ρωf,i qf δf,h (4)

Weighted average durations from these facilities according to their hourly demand give the
hourly intended charging duration as shown in equation 5.

t0,i,h =

∑
f∈F ρωf,i qf δf,h t0,f∑

f∈F ρωf,i qf δf,h
(5)

Finally, the maximum of these hourly demands (qi,h) is chosen as the design charger demand
qi and the corresponding average intended charging duration is chosen as the intended charging
duration for that charger and for that demand. The process is expressed in mathematical form
as shown in equation 6.

qi = maxh∈H qi,h

t0,i = t0,i,h∗ ;h∗ = argmaxh∈H(qi,h)
(6)

The cyclic dependencies among the system of equations 2-6 create a stochastic user
equilibrium. We solve this system of equations using the accelerated method of successive
average (AMSA) proposed by Liu et al. (2009). Once the equilibrium is solved, the hourly energy
draw per zone (Vz,h) can be calculated by summing up the hourly charger power draws Vi,h for
chargers in that zone. The maximum value among the hourly power draw is the maximum
energy draw per zone Vz. This value will be used to calculate the zonal power constraints. The
process is explained mathematically in equation 7.

Vi,h = max(b, t0,i,h ∗ vxi ∗ qi,h)

Vz,h =
∑

i∈Iz∪Jz

Vi,h
(7)

3.4 Metamodel Optimization
With the above formulations, the objective in equation 1 can be reformulated as below.
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minxi,pi

1

|I|+ |J |

∑
i∈I

(ti − t0,i) +
∑
j∈J

(tj − t0,j)

 ; ∀i ∈ I

xi, xj ∈ X {Level 1, Level 2 or Fast}
pi, pj ∈ P {0, 1, 2, ..., pmax}

s.t. ∑
i∈I∪J

pi × Co,xi ≤ Bo∑
i∈I

pi × Cs,xi ≤ Bs

maxh∈H(Vz,h) ≤ Vz; ∀z ∈ Z

(8)

The decision variables in this optimization process are composite and take discrete values.
The SUE demand allocation model developed in the previous section is nonlinear, making
both the objective function and the zonal power constraints nonlinear. Furthermore, the
high dimensionality of the problem (2400 variables) and the absence of a closed-form solution
necessitate the use of derivative-free metaheuristic optimization methods. We used OPT4J
a library in JAVA specialized for meta heuristics optimization for solving our problem. The
evolutionary algorithm in OPT4J supports nonlinear large-dimension problems, however, with
an 11s runtime of the metamodel, we had to keep the maximum budget of 10,000 evaluations.
GA however, does not support constrained optimization. Hence, we moved the nonlinear i.e.,
the zonal power constraint to the objective as below.

minxi,pi

1

|I|+ |J |

∑
i∈I

(ti − t0,i) +
∑
j∈J

(tj − t0,j)

+

λ×min {maxh∈H(Vz,h)− Vz, 0} ; ∀i ∈ I

xi, xj ∈ X {Level 1, Level 2 or Fast}
pi, pj ∈ P {0, 1, 2, ..., pmax}

(9)

λ here denotes the weight to prioritize constraints satisfaction vs objective minimization. In our
experiments, we choose λ = 1. With a vast solution space most of which violates the budget
and power limit constraints, we found that it is beneficial both in terms of convergence rate and
objective quality to put the budget constraint in the random solution generation process rather
than in the objective. Algorithm 2 shows the pseudo-code that was used to generate unbiased
random solutions within the budget constraints. Manual hyperparameter tuning was performed
for faster convergence.

4 Experimental Setup and Results
4.1 Scenario Description
The experimental setup for this study focuses on a detailed scenario derived from the Montreal
network. A 10% sample of the population, consisting of 297,128 individuals, was used, with
1,392 existing public chargers and no provision for home charging. The scenario assumes an
EV penetration rate of 25%, with 74,542 EV owners, significantly higher than Canada’s 2023
national EV rate of 1.3% (proportion of car owners not proportion of total travelers) but
somewhat aligned with the rapidly increasing adoption seen in Quebec, where 25% of new
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Algorithm 2 Budget-Constrained Charger Configuration Initialization
1: Input: Number of chargers, maximum charger configurations (type and plug pairs), setup

budget Cs, operation budget Co, cost functions for creation cs,x and operation co,x
2: Output: Charger configurations (type and plug count)
3: Initialize all chargers with minimal configuration (type 0, plug count 0)
4: Track remaining setup and operation budgets Cs and Co

5: while both Cs > 0 and Co > 0 do
6: Randomly select a charger
7: Compute feasible configurations (type and plug count pairs) based on remaining budgets
8: if a feasible configuration exists then
9: Assign a feasible configuration (type and plug count pair) that fits within the budgets

10: Update the remaining budgets Cs and Co accordingly
11: else
12: Reduce feasible configuration space and retry
13: if no feasible configuration can fit any charger then
14: Break
15: Return: Final charger configurations (type and plug count for each charger)

vehicle registrations were electric. Additionally, no home charger availability will produce a
longer queue creating a high-demand context to rigorously test the proposed charger placement
framework.

The charging infrastructure in the scenario includes chargers with a maximum plug limit
of 10, with costs varying based on charger type. Level 1 chargers incur a setup cost of $5k
per plug, Level 2 chargers cost $10k per plug, and Fast chargers cost $20k per plug. The
operation costs are set at $200, $400, and $800 per plug for Level 1, Level 2, and Fast chargers,
respectively. Budget constraints are introduced to ensure realistic deployment conditions, with
setup costs capped at 60% of the cost required to establish the current facilities and operation
costs set at 160% of the expense for running existing facilities.

The network is further divided into six zones, each with a power draw limit set to 1.6
times the current power draw. To address the spatial distribution of chargers, 2,500 potential
hotspots were considered, including the 1,392 fixed existing charger locations. This results in
a total problem dimension of 2,216 decision variables. The combination of elevated demand,
budgetary constraints, and zonal power limits creates a challenging scenario for testing the
proposed optimization and allocation framework.

4.2 Step 1: Modified K-mean Algorithm Results
Figure 5 illustrates the outcomes of Step 1 for two different feature configurations. In the
first case, the k-means algorithm used only location and facility usage data as input features.
In the second case, the modified k-means algorithm incorporated location, facility usage, and
the average activity duration of EV users into the feature set. While facility usage intuitively
guides cluster centroids toward high-demand facilities, the impact of including activity duration
remains uncertain and is investigated through this experiment. This step aims to evaluate
whether prioritizing longer activity durations improves the clustering outcome or introduces
unintended biases.

To further evaluate the impact of the feature vector configurations, we assigned fast
chargers with 10 plugs to all candidate charger locations generated by both configurations.
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(a)

(b)

Figure 5: Existing and potential charger facilities among activity facilities for different feature
vector configuration (a) Montreal network and (b) Zoomed-in portion of Montreal network
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Figure 6: Vehicle plugged and queued in MATSim urban EV scenario for different feature
configuration

This ensures that both configurations require the same monetary budget and, in the absence
of zonal power limit constraints, would likely result in similar levels of energy draw. We then
ran the MATSim urban EV scenario to observe the outcomes. Figure 6 presents the total
number of vehicles plugged in and queued throughout the day for both feature configurations,
providing insights into their performance under identical resource allocation.

The results indicate that, for similar resource allocation, the peak hour vehicle plug-in
count was slightly higher when activity duration was included in the feature vector compared
to when it was excluded. Simultaneously, the inclusion of activity duration led to a significant
reduction in the number of queued vehicles, suggesting a clear benefit in incorporating activity
duration as a feature for determining candidate charger locations using the proposed k-means
algorithm.

To assess charger availability, we examined the number of agents unable to find chargers
near their vicinity. This number was negligible in both cases—350 versus 650 out of 25,000
requests—highlighting the adequacy of charger coverage in both configurations. Interestingly,
the configuration without activity duration performed marginally better in terms of charger
availability. This may be attributed to the inclusion of activity duration shifting charger
clusters closer to locations with longer activities, such as residential areas where home activities
dominate. Consequently, fewer chargers may be allocated to commercial or office areas, where
peak-hour queues typically form during work hours.

Another possible explanation is that longer activity durations can lead to fewer turnovers at
chargers, as vehicles remain plugged in for extended periods. This could inadvertently lower the
availability of chargers in areas with high demand during specific time periods, such as office
hours. Conversely, excluding activity duration results in a more spatially distributed placement
of chargers, balancing the demand between residential and non-residential areas, albeit at the
cost of higher peak-hour queues.
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Figure 7: Convergence of Step 2: Metamodel Optimization

4.3 Step 2: Metamodel Optimization Results
In the optimization phase of the study, we began by evaluating the performance of the
base scenario, which included 1,391 public chargers with a total of approximately 2,000 to
4,000 available charger plugs, servicing 75,000 EV users. This scenario exhibited an average
peak-hour queue of 36.2 hours, as calculated using the volume delay function. It is important
to note that this queue value does not represent practical real-world queuing times but instead
reflects the severe mismatch between supply and demand. This mismatch was intentionally
created by excluding home chargers, resulting in a scenario where the available infrastructure
is insufficient to meet the high demand. The scenario is designed to mathematically stress test
the developed charger design framework under extreme conditions, emphasizing its ability to
handle high-demand scenarios effectively.

To explore potential improvements, a random assignment approach was implemented. This
involved distributing plugs and charger types randomly across the network, utilizing the full
budget. The results, averaged over 25 scenarios, showed a reduction in the average peak-hour
queue to 27.3 hours. This reduction sets the benchmark for the optimization algorithm as it
represents the bare minimum one should be able to reduce the objective even with random
assignment with similar resource constraints.

Finally, the proposed optimization framework achieved a significant improvement, reducing
the average peak-hour queue to 21.47 hours after 500 generations of the genetic algorithm. This
optimized solution demonstrates the effectiveness of the structured optimization framework
in allocating resources more efficiently. Figure 7 illustrates the convergence process over
successive iterations, underscoring the robustness of the proposed methodology in addressing
severe demand-supply imbalances in the absence of home charging facilities.

As shown in Figure 8, the optimized solution deployed a significantly higher number of
new plugs compared to the original scenario while utilizing only 60% of the total budget.
Notably, the optimization process prioritized the quantity of plugs over the installation of
higher-power chargers. This strategy reflects the modeled charging behavior, where charging
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Figure 8: Charger type composition in original vs optimized new chargers

durations are governed by activities not plug types, and hence in a severely supply-demand
imbalanced scenario, reducing queue requires more plugs rather than faster chargers. The
optimization algorithm effectively captured this rationale, demonstrating its ability to extract
the underlying dynamics of charging behavior and infrastructure requirements.

The spatial distribution of the optimized chargers is depicted in Figure 9. Here the size of
the dots represents the number of plugs in that charger. The optimized solution demonstrates
a clear preference for installing multiple Level 1 chargers in less congested areas rather than
deploying higher-powered Level 2 or fast chargers. Fast chargers are predominantly located
in high-activity zones where demand peaks, such as central business districts or other busy
areas with significant throughput. Interestingly, the optimization process revealed an almost
negligible deployment of Level 2 chargers. This outcome may stem from the modeled trade-off
between the cost-effectiveness of Level 1 chargers and the high capacity utilization of fast
chargers in busy zones. Overall, the optimization process did capture the spatial demand and
activity type variability over the Montreal network.

While running the optimization solution in MATSim Montreal within the urbanEV
framework, a substantial reduction in the average queue per plug was noticed compared to
the base scenario. This outcome reflects the improved distribution of charging resources across
the network. At the same time, the average number of vehicles plugged into chargers per
plug decreased slightly, which corresponds to the addition of a larger number of slower Level 1
chargers in the optimized solution. These chargers increase coverage but have lower throughput,
leading to a marginal decline in average plug utilization. Figure 10 shows the number of vehicles
plugged in and queued per plug when running MATSim Montreal with the optimal charger
configuration. The peak number of queued vehicles, however, increased compared to the base
scenario. This result suggests the presence of demand elasticity, where improved charging
infrastructure attracts additional users who previously refrained from charging due to long
queues or lack of availability. In future research, we plan to include demand elasticity in our
metamodel for a more precise sequential charger allocation allocation algorithm in the urban
context.
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Figure 9: Spatial distribution of chargers in the optimization result

Figure 10: Normalized vehicle plugged in and queued per plug in the optimized urbanEV
scenario
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5 Conclusion and Future Work
This study introduced a comprehensive framework for addressing the sequential EV charger
location and type allocation problem in urban contexts where charging duration is governed
by activity pattern and activity duration rather than vehicle state of charge. The proposed
framework combined both demand-based and flow-capturing charger allocation approaches
present in the literature by developing a two-stage algorithm.

In the first step, a modified k-means clustering algorithm identified candidate charger
locations by incorporating the spatial distribution of facilities, facility usage, and average
activity duration. The aim of this step was to capture EV users’ activity trajectories and at
the same time reduce complexity and problem dimension for the second stage optimization
problem. In this step, we further explored multiple feature configurations and their effects on
charger placement using the proposed k-means clustering algorithms for candidate location
selection. The results indicated that with activity duration incorporated into the feature
vector, the proposed modified k-means algorithm works better in distributing chargers to
reduce peak queue and increase peak utilization within the same resource constraints.

The second step involved a metamodel-based optimization process to allocate charger types
and plugs across the identified candidate locations in the first step while satisfying operational
and setup budget constraints and zonal power level constraints. A simplified stochastic user
equilibrium-based charger demand allocation model was developed which approximates the
charger demand, average charging duration, and charging queue given a charger type and plug
configuration in the optimization process. The metamodel was quite efficient with an average
equilibrium convergence of 11-seconds for the large-scale MATSim Montreal scenario. The
metamodel integrated behavioral parameters from MATSim, maintaining consistency with
the activity-based simulation environment. An evolutionary algorithm with a custom random
sampler was created to enforce the resource constraints efficiently in the sampling method while
ensuring unbiased sampling. The results revealed that, in scenarios with severe supply-demand
imbalances, the optimization process favored deploying multiple low-powered chargers (Level
1) over fewer high-powered ones. This preference aligns with the modeled dynamics, where
activity-driven charging durations often make throughput less critical than coverage.

The optimized solution achieved a significant reduction in queuing times compared to the
baseline, despite being deployed in a heavily overloaded scenario. The spatial distribution
of chargers further demonstrated the model’s capacity to allocate resources strategically,
prioritizing fast chargers in high-demand areas and Level 1 chargers in less congested regions.
However, the peak number of queued vehicles increased due to demand elasticity, highlighting
the necessity of a feedback loop between infrastructure improvement and user behavior.

Applied to the large-scale, real-world scenario of greater Montreal, characterized by
significant supply-demand imbalances, the proposed framework demonstrated robustness and
effectively captured the intuition of prioritizing quantity over quality in the given urban context.

Future project extensions can expand on the following ideas.

• Multi-objective optimization to minimize life-cycle emissions.

• Enhanced metamodels for better demand elasticity predictions.

• Integration of machine learning for dynamic optimization.

• Incorporation of pricing strategies to manage peak demand.
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