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“ Good information helps make right decisions ”

Massive digital traces = Enhance mobility diagnosis
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Mobility Need insights for solutions = Massive Data
. Tra&!:‘caolr!geers‘ ﬁs * Understand the needs * \Wide-coverage
* Energy concern * Diagnose the problems * Up-to-date
 Emissions and pollutions * Capture the trends * Rich info for obtainning

knowledge of human
movements
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- Modern Mobility Data

What is modern? (vs traditional surveys)

* By sensing technologies
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* Mobility localization Info generated automatically

Digital trajectory data (as typical forms)
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* GPS receivers (mobile phones, cars, etc.)

* Public transit records (ticket validations)

- Geo-tagged tweets etc.

Floating Car Data N 2
g / X Legend
* GPS traces of moving vehicles /;; f Trajectories
- Per record per 30s~60s (sourced from Coyote) s b BB locoFren
» 3~5% penetration rate (160,000 observed vehicles in fle-de-France) FCD examples over lle-de-France
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- Research Topic

A Ph.D. thesis (2019.01-2021.12 @L.VMT, ENPC, supervised by Fabien LEURENT and Xiaoyan XIE)

Objective
* Mobility pattern diagnosis by Trajectory data mining

Issues

____________________________________________________________________________________________________________________________

Two levels of 1ssues « Vehicle usage type (trips)

Individual-Centered * User differentiation Case StUdy:
. * Mobility regularities (stays) |
Mobility Patterns \ Explore home-to-work
* Anchor places (e.g. homes and work places) | . . a
. Spatial relations of lle-de-France

* Travel time estimation (prediction)
7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777 ¥ ¢ Commuting situations
 Functional zones (intra-) '

Place-Based . Pand occup%tlons. (e.g co.mmermal VST
* Spatial organizations (inter-)

* Employment cores and their catchment areas
* Spatial interactions (inter-) b
a

e Origin — Destination trip flow recherche |
! environnement
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e Centers and catchment areas

Mobility Patterns
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. Case Study:

“Explore home-to-work spatial relations of the IDF region”

Analytical steps
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Geographical

Phase 1:

Trajectory processing > detect home and workplaces

Phase 2:

Spatial distribution analysis = identify employment centers

/

Phase 3:

Spatial relation analysis = discover bonded spatial communities
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- Phase 1: Home and workplace detection
Aim: @Q&ﬂﬂm Egl‘#) and workplaces

Approach: featuring mining + unsupervised learning -> Learn regularities

Scatter of workplaces

1) Trajectory > stay points (by sequencing algorithm)

a trip
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2) Stay points - functional places (by DBSCAN)

place;

= 3) Functional places > homes, workplaces (by Gaussian
Mixture Model + Kmeans)

3. According 1o :
= Visit duration and frequentation

E.g.: homes: more likely with patterns of visits at the end of day, on
almost every day recherche |
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- Phase 2: Spatial distribution analysis

Aim: Identify employment core areas

Approach: density modeling + spatial clustering = delineate core areas based on

workplaces

1) Kernel Density Estimation-> density contours b) HDBSCAN (spatial clustering) -> core clusters -> core zones

spatial zones from IAU 2
(aggregation of municipalities)

ssonnes

Map tiles by
<
{ *® Work place clusters

- Employment density countours Emmm Employment core areas v

Romd
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[ Spatial zones of the Paris Region ‘
[ e P, T R e o D ) 3, uuid (C) OpenStreetMap contributors < ,ivmlmsr\:pwymen,t Cor/e FONAS M /Vilenauve-sur-Yonne
(a)-Spatial -density-contours-of -work-places:------++==+++- -(b)-Employment-core-areas-and-core-zones"
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Results:
10 employment core zones
« La-Défense
Boulogne-Billancourt
Versailles
Noisy-le-grand
Efc.
Account for 43% of total jobs

Notes:
Various-density clustering
» Finer-grained in dense areas and

coarser in sparse areas
Results based on auto-mobilists only
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- Phase 3: Spatial relation analysis (1)

Aim: Identify spatial communities
Approach: home-to-work flow + graph partition > detect bonded areas

1) Build jobs-housing graph network 2) Graph partition = find communities

Based on home-to-work flow Method: find sub-networks with denser intfra-connections and
sparser inter-connections

Output: communities, which are then used to interpret bonded
territorial regions

e.g. Community detection by finding inner-dense sub-networks

/

A community
(denser internal connections

—— Jobs-housing network h |C}]1b D
[ Spatial zones of the Paris Region recnerc ?
onnemen

Employment core zones . o . . .
i 8 Figure source: by Thamindu Dilshan Jayawickrama @ towardsdatascience.com v« sansrece



- Phase 3: Spatial relation analysis (2)

Results of detected spatial communities and their sub-centers
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- Crépy-en-Valois

~Results:
7 chetnuTory “ 6 spatial communities
= Consistent with the layout of major highways

(since results based on auto-mobilists from FCD)

Remarks
= Communities are mainly formed by adjacent zones

—> show the nature of spatial cohesion
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* Employment cores are embedded in the
communities

T - interpret the “catchment” property



Core-periphery patterns: the “radiation” of cores

[ Residential zones, whose color indicate nb. of residents working in the core [ Residential zones, whose color indicate nb. of residents working in the core [ Residential zones, whose color indicate nb. of residents working in the core [ Residential zones, whose color indicate nb. of residents worklr?g in the core
The target employment core The target employment core The target employment core The target employment core
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Contribution
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Data-science driven method for automated mobility
analytics

Insights for facilitating network planning and land-use
evaluation

Future expansion

Currently only applied on car mode
Replicable and scalable to multimodal analysis
- by using a database involving multimodal trips

(e.g. mobile phone data, fused datasets etc.)
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Des questions ?

Danyang SUN
danyang.sun@enpc.fr
lab-recherche-environnement.org



‘ Appendix (1)

Result evaluation

Comparing with census data (Insee, 2017)

Consistent = the dense areas of jobs in space can be well discovered based on FCD
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Appendix (2) - Data representativeness

Home_place_distribution_automobilist_from_FCD

Home_place_distribution_automobilist_from_RGP2017
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Appendix (3) - Two-level place type identification

Activity Type Identification Significant-Place Type Identification
- Features: 1) time of day and 2) activity duration - Features: Activity profiles of each place (conditional
- Approach: Gaussian Mixture Modeling relative frequencies over each activity type)
- Results: - Approach: K-means clustering
o Weekdays: 4 activity types - Results: 7 clusters -> 5 types by characterization
o Weekends: 3 activity types o Home (cO & c5):significant late-day long activities

o Workplaces (c2 & c6): significant early-day activities

) o Secondary places etc.
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activity_tp
cOmpare with Rule-Based Identification
= Rule-based identification are widely adopted

Table. Results of Evaluation
By our method By rule-based identification (considered as base reference) Consistency ratio

on identifying home/work places Home Work Secondary
- A common lack of ground truth for such data Home 3601 107 116 96.2% lab
Work 26 1254 108 90.3% recherche |
- Showed a highly consistent matching Secondary 188 2063 10282 89.0% avironnement




