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“ Good information helps make right decisions ”

Mobility
challenges

Need insights for solutions
• Understand the needs
• Diagnose the problems
• Capture the trends

Massive Data
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Massive digital traces à Enhance mobility diagnosis

• Traffic congestion
• Energy concern
• Emissions and pollutions

• Wide-coverage
• Up-to-date
• Rich info for obtainning

knowledge of human 
movements 



Modern Mobility Data
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FCD examples over Île-de-France

What is modern? (vs traditional surveys)
� By sensing technologies

� Mobility localization Info generated automatically

Digital trajectory data (as typical forms)
� GPS receivers (mobile phones, cars, etc.)

� Public transit records (ticket validations)

� Geo-tagged tweets etc.

Floating Car Data
� GPS traces of moving vehicles

� Per record per 30s~60s (sourced from Coyote)

� 3~5% penetration rate (160,000 observed vehicles in Île-de-France)
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Research Topic

Objective
• Mobility pattern diagnosis by   Trajectory data mining

A Ph.D. thesis (2019.01-2021.12 @LVMT, ENPC, supervised by Fabien LEURENT and Xiaoyan XIE)

Issues 

Two levels of issues   

Place-Based 
Mobility Patterns

• Functional zones (intra-)
• Land occupations (e.g commercial vs residential)

• Spatial organizations (inter-)
• Employment cores and their catchment areas

• Spatial interactions (inter-)
• Origin – Destination trip flow

• Vehicle usage type (trips)
• User differentiation 

• Mobility regularities (stays)       
• Anchor places (e.g. homes and work places)

• Travel time estimation (prediction)

Individual-Centered
Mobility Patterns Explore home-to-work

spatial relations of Île-de-France
• Commuting situations
• Centers and catchment areas

Case study:



Analytical steps

Phase 1:
Trajectory processing à detect home and workplaces

Phase 2:
Spatial distribution analysis à identify employment centers

Phase 3:
Spatial relation analysis à discover bonded spatial communities 

Individual 
analysis

Geographical
analysis

Case Study:
“Explore home-to-work spatial relations of the IDF region”
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1) Trajectory à stay points (by sequencing algorithm)

2)  Stay points à functional places (by DBSCAN)

3) Functional places à homes, workplaces  (by Gaussian 
Mixture Model + Kmeans)

According to :
• Visit duration and frequentation
• E.g.: homes: more likely with patterns of visits at the end of day, on 

almost every day

Phase 1: Home and workplace detection 
(anonymized)Aim: Recognize the home and workplaces

Approach: featuring mining + unsupervised learning -> Learn regularities
Scatter of homes Scatter of workplaces



Phase 2: Spatial distribution analysis
Aim: Identify employment core areas
Approach: density modeling + spatial clustering à delineate core areas based on 
workplaces

1) Kernel Density Estimation-> density contours b) HDBSCAN (spatial clustering) -> core clusters -> core zones

Results:
10 employment core zones
• La-Défense
• Boulogne-Billancourt 
• Versailles
• Noisy-le-grand
• Etc.

Account for 43% of total jobs

Notes: 
Various-density clustering
• Finer-grained in dense areas and 

coarser in sparse areas
Results based on auto-mobilists only

spatial zones from IAU
(aggregation of municipalities)
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Phase 3: Spatial relation analysis (1)

1) Build jobs-housing graph network
• Based on home-to-work flow

2) Graph partition à find communities
• Method: find sub-networks with denser intra-connections and 

sparser inter-connections
• Output: communities, which are then used to interpret bonded 

territorial regions

A community
(denser internal connections)

e.g. Community detection by finding inner-dense sub-networks

Figure source: by Thamindu Dilshan Jayawickrama @ towardsdatascience.com

Phase 3: Spatial relation analysis (1) 
Aim: Identify spatial communities
Approach: home-to-work flow + graph partition à detect bonded areas
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Phase 3: Spatial relation analysis (2) 

Results of detected spatial communities and their sub-centers

Results:
§ 6 spatial communities

§ Consistent with the layout of major highways

(since results based on auto-mobilists from FCD)

Remarks
§ Communities are mainly formed by adjacent zones

à show the nature of spatial cohesion

§ Employment cores are embedded in the 
communities

à interpret the “catchment” property
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Core-periphery patterns: the “radiation” of cores 

• The “blueness” indicates the 
number residents working in the 
core

• Confirm that the communities were 
not randomly aggregated



Contribution
§ Data-science driven method for automated mobility 

analytics

§ Insights for facilitating network planning and land-use 
evaluation
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Future expansion
§ Currently only applied on car mode

§ Replicable and scalable to multimodal analysis 

- by using a database involving multimodal trips

(e.g. mobile phone data,  fused datasets etc.)



Des questions ?
Danyang SUN
danyang.sun@enpc.fr
lab-recherche-environnement.org



Appendix (1)
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Result evaluation

� Comparing with census data (Insee, 2017)
Ø Consistent à the dense areas of jobs in space can be well discovered based on FCD

Job numbers by municipalities from FCD (2019) Job numbers by municipalities from census data (2017)
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VS

VS

Appendix (2) - Data representativeness
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Appendix (3) - Two-level place type identification


